Extensions 1→N→G→Q→1 with N=C22xC10 and Q=C6

Direct product G=NxQ with N=C22xC10 and Q=C6
dρLabelID
C23xC30240C2^3xC30240,208

Semidirect products G=N:Q with N=C22xC10 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C22xC10):C6 = C2xD5xA4φ: C6/C1C6 ⊆ Aut C22xC10306+(C2^2xC10):C6240,198
(C22xC10):2C6 = A4xC2xC10φ: C6/C2C3 ⊆ Aut C22xC1060(C2^2xC10):2C6240,203
(C22xC10):3C6 = D4xC30φ: C6/C3C2 ⊆ Aut C22xC10120(C2^2xC10):3C6240,186
(C22xC10):4C6 = C6xC5:D4φ: C6/C3C2 ⊆ Aut C22xC10120(C2^2xC10):4C6240,164
(C22xC10):5C6 = D5xC22xC6φ: C6/C3C2 ⊆ Aut C22xC10120(C2^2xC10):5C6240,205

Non-split extensions G=N.Q with N=C22xC10 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C22xC10).C6 = A4xDic5φ: C6/C1C6 ⊆ Aut C22xC10606-(C2^2xC10).C6240,110
(C22xC10).2C6 = A4xC20φ: C6/C2C3 ⊆ Aut C22xC10603(C2^2xC10).2C6240,152
(C22xC10).3C6 = C15xC22:C4φ: C6/C3C2 ⊆ Aut C22xC10120(C2^2xC10).3C6240,82
(C22xC10).4C6 = C3xC23.D5φ: C6/C3C2 ⊆ Aut C22xC10120(C2^2xC10).4C6240,48
(C22xC10).5C6 = C2xC6xDic5φ: C6/C3C2 ⊆ Aut C22xC10240(C2^2xC10).5C6240,163

׿
x
:
Z
F
o
wr
Q
<